Serveur d'exploration sur les effecteurs de phytopathogènes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A phosphoinositide 5-phosphatase from Solanum tuberosum is activated by PAMP-treatment and may antagonize phosphatidylinositol 4,5-bisphosphate at Phytophthora infestans infection sites.

Identifieur interne : 000227 ( Main/Exploration ); précédent : 000226; suivant : 000228

A phosphoinositide 5-phosphatase from Solanum tuberosum is activated by PAMP-treatment and may antagonize phosphatidylinositol 4,5-bisphosphate at Phytophthora infestans infection sites.

Auteurs : Juliane Rausche [Allemagne] ; Irene Stenzel [Allemagne] ; Ron Stauder [Allemagne] ; Marta Fratini [Allemagne] ; Marco Trujillo [Allemagne] ; Ingo Heilmann [Allemagne] ; Sabine Rosahl [Allemagne]

Source :

RBID : pubmed:32762082

Abstract

Potato (Solanum tuberosum) plants susceptible to late blight disease caused by the oomycete Phytophthora infestans display enhanced resistance upon infiltration with the pathogen-associated molecular pattern (PAMP), Pep-13. Here, we characterize a potato gene similar to Arabidopsis 5-phosphatases which was identified in transcript arrays performed to identify Pep-13 regulated genes, and termed StIPP. Recombinant StIPP protein specifically dephosphorylated the D5-position of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2 ) in vitro. Other phosphoinositides or soluble inositolpolyphosphates were not converted. When transiently expressed in tobacco (Nicotiana tabacum) pollen tubes, a StIPP-YFP fusion localized to the subapical plasma membrane and antagonized PtdIns(4,5)P2 -dependent effects on cell morphology, indicating in vivo functionality. Phytophthora infestans-infection of N. benthamiana leaf epidermis cells resulted in relocalization of StIPP-GFP from the plasma membrane to the extra-haustorial membrane (EHM). Colocalizion with the effector protein RFP-AvrBlb2 at infection sites is consistent with a role of StIPP in the plant-oomycete interaction. Correlation analysis of fluorescence distributions of StIPP-GFP and biosensors for PtdIns(4,5)P2 or phosphatidylinositol 4-phosphate (PtdIns4P) indicate StIPP activity predominantly at the EHM. In Arabidopsis protoplasts, expression of StIPP resulted in the stabilization of the PAMP receptor, FLAGELLIN-SENSITIVE 2, indicating that StIPP may act as a PAMP-induced and localized antagonist of PtdIns(4,5)P2 -dependent processes during plant immunity.

DOI: 10.1111/nph.16853
PubMed: 32762082


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A phosphoinositide 5-phosphatase from Solanum tuberosum is activated by PAMP-treatment and may antagonize phosphatidylinositol 4,5-bisphosphate at Phytophthora infestans infection sites.</title>
<author>
<name sortKey="Rausche, Juliane" sort="Rausche, Juliane" uniqKey="Rausche J" first="Juliane" last="Rausche">Juliane Rausche</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), D-06120, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), D-06120</wicri:regionArea>
<wicri:noRegion>06120</wicri:noRegion>
<wicri:noRegion>06120</wicri:noRegion>
<wicri:noRegion>D-06120</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Stenzel, Irene" sort="Stenzel, Irene" uniqKey="Stenzel I" first="Irene" last="Stenzel">Irene Stenzel</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt Mothes-Str. 3, Halle (Saale), D-06120, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt Mothes-Str. 3, Halle (Saale), D-06120</wicri:regionArea>
<wicri:noRegion>06120</wicri:noRegion>
<wicri:noRegion>06120</wicri:noRegion>
<wicri:noRegion>D-06120</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Stauder, Ron" sort="Stauder, Ron" uniqKey="Stauder R" first="Ron" last="Stauder">Ron Stauder</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), D-06120, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), D-06120</wicri:regionArea>
<wicri:noRegion>06120</wicri:noRegion>
<wicri:noRegion>06120</wicri:noRegion>
<wicri:noRegion>D-06120</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fratini, Marta" sort="Fratini, Marta" uniqKey="Fratini M" first="Marta" last="Fratini">Marta Fratini</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt Mothes-Str. 3, Halle (Saale), D-06120, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt Mothes-Str. 3, Halle (Saale), D-06120</wicri:regionArea>
<wicri:noRegion>06120</wicri:noRegion>
<wicri:noRegion>06120</wicri:noRegion>
<wicri:noRegion>D-06120</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Trujillo, Marco" sort="Trujillo, Marco" uniqKey="Trujillo M" first="Marco" last="Trujillo">Marco Trujillo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Independent Research Group Protein Ubiquitinylation, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), D-06120, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Independent Research Group Protein Ubiquitinylation, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), D-06120</wicri:regionArea>
<wicri:noRegion>06120</wicri:noRegion>
<wicri:noRegion>06120</wicri:noRegion>
<wicri:noRegion>D-06120</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Heilmann, Ingo" sort="Heilmann, Ingo" uniqKey="Heilmann I" first="Ingo" last="Heilmann">Ingo Heilmann</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt Mothes-Str. 3, Halle (Saale), D-06120, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt Mothes-Str. 3, Halle (Saale), D-06120</wicri:regionArea>
<wicri:noRegion>06120</wicri:noRegion>
<wicri:noRegion>06120</wicri:noRegion>
<wicri:noRegion>D-06120</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rosahl, Sabine" sort="Rosahl, Sabine" uniqKey="Rosahl S" first="Sabine" last="Rosahl">Sabine Rosahl</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), D-06120, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), D-06120</wicri:regionArea>
<wicri:noRegion>06120</wicri:noRegion>
<wicri:noRegion>06120</wicri:noRegion>
<wicri:noRegion>D-06120</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32762082</idno>
<idno type="pmid">32762082</idno>
<idno type="doi">10.1111/nph.16853</idno>
<idno type="wicri:Area/Main/Corpus">000159</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000159</idno>
<idno type="wicri:Area/Main/Curation">000159</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000159</idno>
<idno type="wicri:Area/Main/Exploration">000159</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A phosphoinositide 5-phosphatase from Solanum tuberosum is activated by PAMP-treatment and may antagonize phosphatidylinositol 4,5-bisphosphate at Phytophthora infestans infection sites.</title>
<author>
<name sortKey="Rausche, Juliane" sort="Rausche, Juliane" uniqKey="Rausche J" first="Juliane" last="Rausche">Juliane Rausche</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), D-06120, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), D-06120</wicri:regionArea>
<wicri:noRegion>06120</wicri:noRegion>
<wicri:noRegion>06120</wicri:noRegion>
<wicri:noRegion>D-06120</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Stenzel, Irene" sort="Stenzel, Irene" uniqKey="Stenzel I" first="Irene" last="Stenzel">Irene Stenzel</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt Mothes-Str. 3, Halle (Saale), D-06120, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt Mothes-Str. 3, Halle (Saale), D-06120</wicri:regionArea>
<wicri:noRegion>06120</wicri:noRegion>
<wicri:noRegion>06120</wicri:noRegion>
<wicri:noRegion>D-06120</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Stauder, Ron" sort="Stauder, Ron" uniqKey="Stauder R" first="Ron" last="Stauder">Ron Stauder</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), D-06120, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), D-06120</wicri:regionArea>
<wicri:noRegion>06120</wicri:noRegion>
<wicri:noRegion>06120</wicri:noRegion>
<wicri:noRegion>D-06120</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fratini, Marta" sort="Fratini, Marta" uniqKey="Fratini M" first="Marta" last="Fratini">Marta Fratini</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt Mothes-Str. 3, Halle (Saale), D-06120, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt Mothes-Str. 3, Halle (Saale), D-06120</wicri:regionArea>
<wicri:noRegion>06120</wicri:noRegion>
<wicri:noRegion>06120</wicri:noRegion>
<wicri:noRegion>D-06120</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Trujillo, Marco" sort="Trujillo, Marco" uniqKey="Trujillo M" first="Marco" last="Trujillo">Marco Trujillo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Independent Research Group Protein Ubiquitinylation, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), D-06120, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Independent Research Group Protein Ubiquitinylation, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), D-06120</wicri:regionArea>
<wicri:noRegion>06120</wicri:noRegion>
<wicri:noRegion>06120</wicri:noRegion>
<wicri:noRegion>D-06120</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Heilmann, Ingo" sort="Heilmann, Ingo" uniqKey="Heilmann I" first="Ingo" last="Heilmann">Ingo Heilmann</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt Mothes-Str. 3, Halle (Saale), D-06120, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt Mothes-Str. 3, Halle (Saale), D-06120</wicri:regionArea>
<wicri:noRegion>06120</wicri:noRegion>
<wicri:noRegion>06120</wicri:noRegion>
<wicri:noRegion>D-06120</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rosahl, Sabine" sort="Rosahl, Sabine" uniqKey="Rosahl S" first="Sabine" last="Rosahl">Sabine Rosahl</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), D-06120, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), D-06120</wicri:regionArea>
<wicri:noRegion>06120</wicri:noRegion>
<wicri:noRegion>06120</wicri:noRegion>
<wicri:noRegion>D-06120</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The New phytologist</title>
<idno type="eISSN">1469-8137</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Potato (Solanum tuberosum) plants susceptible to late blight disease caused by the oomycete Phytophthora infestans display enhanced resistance upon infiltration with the pathogen-associated molecular pattern (PAMP), Pep-13. Here, we characterize a potato gene similar to Arabidopsis 5-phosphatases which was identified in transcript arrays performed to identify Pep-13 regulated genes, and termed StIPP. Recombinant StIPP protein specifically dephosphorylated the D5-position of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P
<sub>2</sub>
) in vitro. Other phosphoinositides or soluble inositolpolyphosphates were not converted. When transiently expressed in tobacco (Nicotiana tabacum) pollen tubes, a StIPP-YFP fusion localized to the subapical plasma membrane and antagonized PtdIns(4,5)P
<sub>2</sub>
-dependent effects on cell morphology, indicating in vivo functionality. Phytophthora infestans-infection of N. benthamiana leaf epidermis cells resulted in relocalization of StIPP-GFP from the plasma membrane to the extra-haustorial membrane (EHM). Colocalizion with the effector protein RFP-AvrBlb2 at infection sites is consistent with a role of StIPP in the plant-oomycete interaction. Correlation analysis of fluorescence distributions of StIPP-GFP and biosensors for PtdIns(4,5)P
<sub>2</sub>
or phosphatidylinositol 4-phosphate (PtdIns4P) indicate StIPP activity predominantly at the EHM. In Arabidopsis protoplasts, expression of StIPP resulted in the stabilization of the PAMP receptor, FLAGELLIN-SENSITIVE 2, indicating that StIPP may act as a PAMP-induced and localized antagonist of PtdIns(4,5)P
<sub>2</sub>
-dependent processes during plant immunity.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">32762082</PMID>
<DateRevised>
<Year>2020</Year>
<Month>11</Month>
<Day>17</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1469-8137</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2020</Year>
<Month>Aug</Month>
<Day>06</Day>
</PubDate>
</JournalIssue>
<Title>The New phytologist</Title>
<ISOAbbreviation>New Phytol</ISOAbbreviation>
</Journal>
<ArticleTitle>A phosphoinositide 5-phosphatase from Solanum tuberosum is activated by PAMP-treatment and may antagonize phosphatidylinositol 4,5-bisphosphate at Phytophthora infestans infection sites.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/nph.16853</ELocationID>
<Abstract>
<AbstractText>Potato (Solanum tuberosum) plants susceptible to late blight disease caused by the oomycete Phytophthora infestans display enhanced resistance upon infiltration with the pathogen-associated molecular pattern (PAMP), Pep-13. Here, we characterize a potato gene similar to Arabidopsis 5-phosphatases which was identified in transcript arrays performed to identify Pep-13 regulated genes, and termed StIPP. Recombinant StIPP protein specifically dephosphorylated the D5-position of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P
<sub>2</sub>
) in vitro. Other phosphoinositides or soluble inositolpolyphosphates were not converted. When transiently expressed in tobacco (Nicotiana tabacum) pollen tubes, a StIPP-YFP fusion localized to the subapical plasma membrane and antagonized PtdIns(4,5)P
<sub>2</sub>
-dependent effects on cell morphology, indicating in vivo functionality. Phytophthora infestans-infection of N. benthamiana leaf epidermis cells resulted in relocalization of StIPP-GFP from the plasma membrane to the extra-haustorial membrane (EHM). Colocalizion with the effector protein RFP-AvrBlb2 at infection sites is consistent with a role of StIPP in the plant-oomycete interaction. Correlation analysis of fluorescence distributions of StIPP-GFP and biosensors for PtdIns(4,5)P
<sub>2</sub>
or phosphatidylinositol 4-phosphate (PtdIns4P) indicate StIPP activity predominantly at the EHM. In Arabidopsis protoplasts, expression of StIPP resulted in the stabilization of the PAMP receptor, FLAGELLIN-SENSITIVE 2, indicating that StIPP may act as a PAMP-induced and localized antagonist of PtdIns(4,5)P
<sub>2</sub>
-dependent processes during plant immunity.</AbstractText>
<CopyrightInformation>© 2020 The Authors. New Phytologist © 2020 New Phytologist Trust.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Rausche</LastName>
<ForeName>Juliane</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), D-06120, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Stenzel</LastName>
<ForeName>Irene</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt Mothes-Str. 3, Halle (Saale), D-06120, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Stauder</LastName>
<ForeName>Ron</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), D-06120, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fratini</LastName>
<ForeName>Marta</ForeName>
<Initials>M</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0003-0934-3854</Identifier>
<AffiliationInfo>
<Affiliation>Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt Mothes-Str. 3, Halle (Saale), D-06120, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Trujillo</LastName>
<ForeName>Marco</ForeName>
<Initials>M</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-5470-7277</Identifier>
<AffiliationInfo>
<Affiliation>Independent Research Group Protein Ubiquitinylation, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), D-06120, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Heilmann</LastName>
<ForeName>Ingo</ForeName>
<Initials>I</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-2324-1849</Identifier>
<AffiliationInfo>
<Affiliation>Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt Mothes-Str. 3, Halle (Saale), D-06120, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rosahl</LastName>
<ForeName>Sabine</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-7300-5596</Identifier>
<AffiliationInfo>
<Affiliation>Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), D-06120, Germany.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>CRC648 TP A4</GrantID>
<Agency>Deutsche Forschungsgemeinschaft</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>CRC648 TP B10</GrantID>
<Agency>Deutsche Forschungsgemeinschaft</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>CRC648 TP B13</GrantID>
<Agency>Deutsche Forschungsgemeinschaft</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>He3424/1-1</GrantID>
<Agency>Deutsche Forschungsgemeinschaft</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>INST271/371-1 FUGG</GrantID>
<Agency>Deutsche Forschungsgemeinschaft</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>08</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>New Phytol</MedlineTA>
<NlmUniqueID>9882884</NlmUniqueID>
<ISSNLinking>0028-646X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Phytophthora infestans </Keyword>
<Keyword MajorTopicYN="N">Pep-13</Keyword>
<Keyword MajorTopicYN="N">potato</Keyword>
<Keyword MajorTopicYN="N">protein stability</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>09</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>07</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>8</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>8</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>8</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32762082</ArticleId>
<ArticleId IdType="doi">10.1111/nph.16853</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>Aibara I, Miwa K. 2014. Strategies for optimization of mineral nutrient transport in plants: multilevel regulation of nutrient-dependent dynamics of root architecture and transporter activity. Plant and Cell Physiology 55: 2027-2036.</Citation>
</Reference>
<Reference>
<Citation>Ben Khaled S, Postma J, Robatzek S. 2015. A moving view: subcellular trafficking processes in pattern recognition receptor-triggered plant immunity. Annual review of Phytopathology 53: 379-402.</Citation>
</Reference>
<Reference>
<Citation>Berdy SE, Kudla J, Gruissem W, Gillaspy GE. 2001. Molecular characterization of At5PTase1, an inositol phosphatase capable of terminating inositol trisphosphate signaling. Plant Physiology 126: 801-810.</Citation>
</Reference>
<Reference>
<Citation>Bozkurt TO, Belhaj K, Dagdas YF, Chaparro-Garcia A, Wu CH, Cano LM, Kamoun S. 2015. Rerouting of plant late endocytic trafficking toward a pathogen interface. Traffic 16: 204-226.</Citation>
</Reference>
<Reference>
<Citation>Bozkurt TO, Richardson A, Dagdas YF, Mongrand S, Kamoun S, Raffaele S. 2014. The plant membrane-associated REMORIN1.3 accumulates in discrete perihaustorial domains and enhances susceptibility to Phytophthora infestans. Plant Physiology 165: 1005-1018.</Citation>
</Reference>
<Reference>
<Citation>Bozkurt TO, Schornack S, Win J, Shindo T, Ilyas M, Oliva R, Cano LM, Jones AM, Huitema E, van der Hoorn RA et al. 2011. Phytophthora infestans effector AVRblb2 prevents secretion of a plant immune protease at the haustorial interface. Proceedings of the National Academy of Sciences, USA 108: 20832-20837.</Citation>
</Reference>
<Reference>
<Citation>Brunner F, Rosahl S, Lee J, Rudd JJ, Geiler C, Kauppinen S, Rasmussen G, Scheel D, Nurnberger T. 2002. Pep-13, a plant defense-inducing pathogen-associated pattern from Phytophthora transglutaminases. EMBO Journal 21: 6681-6688.</Citation>
</Reference>
<Reference>
<Citation>Chinchilla D, Bauer Z, Regenass M, Boller T, Felix G. 2006. The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. Plant Cell 18: 465-476.</Citation>
</Reference>
<Reference>
<Citation>Cho MH, Chen Q, Okpodu CM, Boss WF. 1992. Separation and quantification of of [3H]inositol phospholipids using thin-layer-chromatography and a computerized 3H imaging scanner. LC-GC 10: 464-468.</Citation>
</Reference>
<Reference>
<Citation>Chomczynski P, Sacchi N. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analytical Biochemistry 162: 156-159.</Citation>
</Reference>
<Reference>
<Citation>Cohen YR. 2002. Beta-aminobutyric acid-induced resistance against plant pathogens. Plant Disease 86: 448-457.</Citation>
</Reference>
<Reference>
<Citation>Collins NC, Thordal-Christensen H, Lipka V, Bau S, Kombrink E, Qiu JL, Huckelhoven R, Stein M, Freialdenhoven A, Somerville SC et al. 2003. SNARE-protein-mediated disease resistance at the plant cell wall. Nature 425: 973-977.</Citation>
</Reference>
<Reference>
<Citation>Dobritzsch M, Lubken T, Eschen-Lippold L, Gorzolka K, Blum E, Matern A, Marillonnet S, Bottcher C, Drager B, Rosahl S. 2016. MATE transporter-dependent export of hydroxycinnamic acid amides. Plant Cell 28: 583-596.</Citation>
</Reference>
<Reference>
<Citation>Dyson MR, Shadbolt SP, Vincent KJ, Perera RL, McCafferty J. 2004. Production of soluble mammalian proteins in Escherichia coli: identification of protein features that correlate with successful expression. BMC Biotechnology 4: 32.</Citation>
</Reference>
<Reference>
<Citation>Ercetin ME, Ananieva EA, Safaee NM, Torabinejad J, Robinson JY, Gillaspy GE. 2008. A phosphatidylinositol phosphate-specific myo-inositol polyphosphate 5-phosphatase required for seedling growth. Plant Molecular Biology 67: 375-388.</Citation>
</Reference>
<Reference>
<Citation>Ercetin ME, Gillaspy GE. 2004. Molecular characterization of an Arabidopsis gene encoding a phospholipid-specific inositol polyphosphate 5-phosphatase. Plant Physiology 135: 938-946.</Citation>
</Reference>
<Reference>
<Citation>Eschen-Lippold L, Altmann S, Rosahl S. 2010. dl-beta-Aminobutyric acid-induced resistance of potato against Phytophthora infestans requires salicylic acid but not oxylipins. Molecular Plant-Microbe Interactions 23: 585-592.</Citation>
</Reference>
<Reference>
<Citation>Eschen-Lippold L, Landgraf R, Smolka U, Schulze S, Heilmann M, Heilmann I, Hause G, Rosahl S. 2012. Activation of defense against Phytophthora infestans in potato by down-regulation of syntaxin gene expression. New Phytologist 193: 985-996.</Citation>
</Reference>
<Reference>
<Citation>Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791.</Citation>
</Reference>
<Reference>
<Citation>Fry W. 2008. Phytophthora infestans: the plant (and R gene) destroyer. Molecular Plant Pathology 9: 385-402.</Citation>
</Reference>
<Reference>
<Citation>Gerth K, Lin F, Daamen F, Menzel W, Heinrich F, Heilmann M. 2017a. Arabidopsis phosphatidylinositol 4-phosphate 5-kinase 2 contains a functional nuclear localization sequence and interacts with alpha-importins. The Plant Journal 92: 862-878.</Citation>
</Reference>
<Reference>
<Citation>Gerth K, Lin F, Menzel W, Krishnamoorthy P, Stenzel I, Heilmann M, Heilmann I. 2017b. Guilt by association: a phenotype-based view of the plant phosphoinositide network. Annual Review of Plant Biology 68: 349-374.</Citation>
</Reference>
<Reference>
<Citation>Gillaspy GE. 2013. The role of phosphoinositides and inositol phosphates in plant cell signaling. Advances in Experimental Medicine and Biology 991: 141-157.</Citation>
</Reference>
<Reference>
<Citation>Golani Y, Kaye Y, Gilhar O, Ercetin M, Gillaspy G, Levine A. 2013. Inositol polyphosphate phosphatidylinositol 5-phosphatase9 (At5ptase9) controls plant salt tolerance by regulating endocytosis. Molecular Plant 6: 1781-1794.</Citation>
</Reference>
<Reference>
<Citation>Gunesekera B, Torabinejad J, Robinson J, Gillaspy GE. 2007. Inositol polyphosphate 5-phosphatases 1 and 2 are required for regulating seedling growth. Plant Physiology 143: 1408-1417.</Citation>
</Reference>
<Reference>
<Citation>Halim VA, Altmann S, Ellinger D, Eschen-Lippold L, Miersch O, Scheel D, Rosahl S. 2009. PAMP-induced defense responses in potato require both salicylic acid and jasmonic acid. The Plant Journal 57: 230-242.</Citation>
</Reference>
<Reference>
<Citation>Halim VA, Hunger A, Macioszek V, Landgraf P, Nürnberger T, Scheel D, Rosahl S. 2004. The oligopeptide elicitor Pep-13 induces salicylic acid-dependent and-independent defense reactions in potato. Physiological and Molecular Plant Pathology 64: 311-318.</Citation>
</Reference>
<Reference>
<Citation>Heilmann I. 2016. Phosphoinositide signaling in plant development. Development 143: 2044-2055.</Citation>
</Reference>
<Reference>
<Citation>Helling D, Possart A, Cottier S, Klahre U, Kost B. 2006. Pollen tube tip growth depends on plasma membrane polarization mediated by tobacco PLC3 activity and endocytic membrane recycling. Plant Cell 18: 3519-3534.</Citation>
</Reference>
<Reference>
<Citation>Hempel F, Stenzel I, Heilmann M, Krishnamoorthy P, Menzel W, Golbik R, Helm S, Dobritzsch D, Baginsky S, Lee J et al. 2017. MAPKs influence pollen tube growth by controlling the formation of phosphatidylinositol 4,5-bisphosphate in an apical plasma membrane domain. Plant Cell 29: 3030-3050.</Citation>
</Reference>
<Reference>
<Citation>Hung CY, Aspesi P Jr, Hunter MR, Lomax AW, Perera IY. 2014. Phosphoinositide-signaling is one component of a robust plant defense response. Frontiers in Plant Science 5: 267.</Citation>
</Reference>
<Reference>
<Citation>Ischebeck T, Stenzel I, Heilmann I. 2008. Type B phosphatidylinositol-4-phosphate 5-kinases mediate pollen tube growth in Nicotiana tabacum and Arabidopsis by regulating apical pectin secretion. Plant Cell 20: 3312-3330.</Citation>
</Reference>
<Reference>
<Citation>Ischebeck T, Stenzel I, Hempel F, Jin X, Mosblech A, Heilmann I. 2011. Phosphatidylinositol-4,5-bisphosphate influences Nt-Rac5-mediated cell expansion in pollen tubes of Nicotiana tabacum. The Plant Journal 65: 453-468.</Citation>
</Reference>
<Reference>
<Citation>Ischebeck T, Vu LH, Jin X, Stenzel I, Löfke C, Heilmann I. 2010. Functional cooperativity of enzymes of phosphoinositide conversion according to synergistic effects on pectin secretion in tobacco pollen tubes. Molecular Plant 3: 870-881.</Citation>
</Reference>
<Reference>
<Citation>Ischebeck T, Werner S, Krishnamoorthy P, Lerche J, Meijon M, Stenzel I, Löfke C, Wiessner T, Im YJ, Perera IY et al. 2013. Phosphatidylinositol 4,5-bisphosphate influences PIN polarization by controlling clathrin-mediated membrane trafficking in Arabidopsis. Plant Cell 25: 4894-4911.</Citation>
</Reference>
<Reference>
<Citation>Johanson U, Karlsson M, Johansson I, Gustavsson S, Sjovall S, Fraysse L, Weig AR, Kjellbom P. 2001. The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiology 126: 1358-1369.</Citation>
</Reference>
<Reference>
<Citation>Kadota Y, Sklenar J, Derbyshire P, Stransfeld L, Asai S, Ntoukakis V, Jones JD, Shirasu K, Menke F, Jones A et al. 2014. Direct regulation of the NADPH oxidase RBOHD by the PRR-associated kinase BIK1 during plant immunity. Molecular Cell 54: 43-55.</Citation>
</Reference>
<Reference>
<Citation>Karimi M, Inze D, Depicker A. 2002. GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends in Plant Science 7: 193-195.</Citation>
</Reference>
<Reference>
<Citation>Kloosterman B, De Koeyer D, Griffiths R, Flinn B, Steuernagel B, Scholz U, Sonnewald S, Sonnewald U, Bryan GJ, Prat S et al. 2008. Genes driving potato tuber initiation and growth: identification based on transcriptional changes using the POCI array. Functional & Integrative Genomics 8: 329-340.</Citation>
</Reference>
<Reference>
<Citation>König S, Hoffmann M, Mosblech A, Heilmann I. 2008a. Determination of content and fatty acid composition of unlabeled phosphoinositide species by thin layer chromatography and gas chromatography. Analytical Biochemistry 378: 197-201.</Citation>
</Reference>
<Reference>
<Citation>König S, Ischebeck T, Lerche J, Stenzel I, Heilmann I. 2008b. Salt stress-induced association of phosphatidylinositol-4,5-bisphosphate with clathrin-coated vesicles in plants. Biochemical Journal 415: 387-399.</Citation>
</Reference>
<Reference>
<Citation>Kusano H, Testerink C, Vermeer JEM, Tsuge T, Shimada H, Oka A, Munnik T, Aoyama T. 2008. The Arabidopsis phosphatidylinositol phosphate 5-kinase PIP5K3 is a key regulator of root hair tip growth. Plant Cell 20: 367-380.</Citation>
</Reference>
<Reference>
<Citation>Landgraf R, Smolka U, Altmann S, Eschen-Lippold L, Senning M, Sonnewald S, Weigel B, Frolova N, Strehmel N, Hause G et al. 2014. The ABC transporter ABCG1 is required for suberin formation in potato tuber periderm. Plant Cell 26: 3403-3415.</Citation>
</Reference>
<Reference>
<Citation>van Leeuwen W, Vermeer JE, Gadella TW Jr, Munnik T. 2007. Visualization of phosphatidylinositol 4,5-bisphosphate in the plasma membrane of suspension-cultured tobacco BY-2 cells and whole Arabidopsis seedlings. The Plant Journal 52: 1014-1026.</Citation>
</Reference>
<Reference>
<Citation>Lipka V, Kwon C, Panstruga R. 2007. SNARE-ware: the role of SNARE-domain proteins in plant biology. Annual Review of Cell and Developmental Biology 23: 147-174.</Citation>
</Reference>
<Reference>
<Citation>Majerus PW, York JD. 2009. Phosphoinositide phosphatases and disease. Journal of Lipid Research 50: S249-254.</Citation>
</Reference>
<Reference>
<Citation>Mei Y, Jia WJ, Chu YJ, Xue HW. 2012. Arabidopsis phosphatidylinositol monophosphate 5-kinase 2 is involved in root gravitropism through regulation of polar auxin transport by affecting the cycling of PIN proteins. Cell Research 22: 581-597.</Citation>
</Reference>
<Reference>
<Citation>Meng X, Zhang S. 2013. MAPK cascades in plant disease resistance signaling. Annual Review of Phytopathology 51: 245-266.</Citation>
</Reference>
<Reference>
<Citation>Menzel W, Stenzel I, Helbig LM, Krishnamoorthy P, Neumann S, Eschen-Lippold L, Heilmann M, Lee J, Heilmann I. 2019. A PAMP-triggered MAPK cascade inhibits phosphatidylinositol 4,5-bisphosphate production by PIP5K6 in Arabidopsis thaliana. New Phytologist 224: 833-847.</Citation>
</Reference>
<Reference>
<Citation>Mishkind M, Vermeer JE, Darwish E, Munnik T. 2009. Heat stress activates phospholipase D and triggers PIP accumulation at the plasma membrane and nucleus. The Plant Journal 60: 10-21.</Citation>
</Reference>
<Reference>
<Citation>Nakagawa T, Kurose T, Hino T, Tanaka K, Kawamukai M, Niwa Y, Toyooka K, Matsuoka K, Jinbo T, Kimura T. 2007. Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. Journal of Bioscience and Bioengineering 104: 34-41.</Citation>
</Reference>
<Reference>
<Citation>Qin L, Zhou Z, Li Q, Zhai C, Liu L, Quilichini TD, Gao P, Kessler SA, Jaillais Y, Datla R et al. 2020. Specific recruitment of phosphoinositide species to the plant-pathogen interfacial membrane underlies Arabidopsis susceptibility to fungal infection. Plant Cell 32: 1665-1688.</Citation>
</Reference>
<Reference>
<Citation>Robatzek S, Chinchilla D, Boller T. 2006. Ligand-induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis. Genes & Development 20: 537-542.</Citation>
</Reference>
<Reference>
<Citation>Saeed B, Brillada C, Trujillo M. 2019. Dissecting the plant exocyst. Current Opinion in Plant Biology 52: 69-76.</Citation>
</Reference>
<Reference>
<Citation>Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4: 406-425.</Citation>
</Reference>
<Reference>
<Citation>Schulze-Lefert P. 2004. Knocking on the heaven's wall: pathogenesis of and resistance to biotrophic fungi at the cell wall. Current Opinion in Plant Biology 7: 377-383.</Citation>
</Reference>
<Reference>
<Citation>Shimada TL, Betsuyaku S, Inada N, Ebine K, Fujimoto M, Uemura T, Takano Y, Fukuda H, Nakano A, Ueda T. 2019. Enrichment of phosphatidylinositol 4,5-bisphosphate in the extra-invasive hyphal membrane promotes colletotrichum infection of Arabidopsis thaliana. Plant and Cell Physiology 60: 1514-1524.</Citation>
</Reference>
<Reference>
<Citation>Si-Ammour A, Mauch-Mani B, Mauch F. 2003. Quantification of induced resistance against Phytophthora species expressing GFP as a vital marker: beta-aminobutyric acid but not BTH protects potato and Arabidopsis from infection. Molecular Plant Pathology 4: 237-248.</Citation>
</Reference>
<Reference>
<Citation>Simon ML, Platre MP, Assil S, van Wijk R, Chen WY, Chory J, Dreux M, Munnik T, Jaillais Y. 2014. A multi-colour/multi-affinity marker set to visualize phosphoinositide dynamics in Arabidopsis. The Plant Journal 77: 322-337.</Citation>
</Reference>
<Reference>
<Citation>Sousa E, Kost B, Malho R. 2008. Arabidopsis phosphatidylinositol-4-monophosphate 5-kinase 4 regulates pollen tube growth and polarity by modulating membrane recycling. Plant Cell 20: 3050-3064.</Citation>
</Reference>
<Reference>
<Citation>Stenzel I, Ischebeck T, König S, Holubowska A, Sporysz M, Hause B, Heilmann I. 2008. The type B phosphatidylinositol-4-phosphate 5-kinase 3 is essential for root hair formation in Arabidopsis thaliana. Plant Cell 20: 124-141.</Citation>
</Reference>
<Reference>
<Citation>Stenzel I, Ischebeck T, Quint M, Heilmann I. 2012. Variable regions of PI4P 5-kinases direct PtdIns(4,5)P2 toward alternative regulatory functions in tobacco pollen tubes. Frontiers in Plant Science 2: 1-14.</Citation>
</Reference>
<Reference>
<Citation>Stenzel I, Ischebeck T, Vu-Becker LH, Riechmann M, Krishnamoorthy P, Fratini M, Heilmann I. 2020. Coordinated localization and antagonistic function of NtPLC3 and PI4P 5-kinases in the subapical plasma membrane of tobacco pollen tubes. Plants (Basel) 9: 452.</Citation>
</Reference>
<Reference>
<Citation>Stevenson-Paulik J, Bastidas RJ, Chiou ST, Frye RA, York JD. 2005. Generation of phytate-free seeds in Arabidopsis through disruption of inositol polyphosphate kinases. Proceedings of the National Academy of Sciences, USA 102: 12612-12617.</Citation>
</Reference>
<Reference>
<Citation>Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28: 2731-2739.</Citation>
</Reference>
<Reference>
<Citation>Tejos R, Sauer M, Vanneste S, Palacios-Gomez M, Li H, Heilmann M, van Wijk R, Vermeer JE, Heilmann I, Munnik T et al. 2014. Bipolar plasma membrane distribution of phosphoinositides and their requirement for auxin-mediated cell polarity and patterning in Arabidopsis. Plant Cell 26: 2114-2128.</Citation>
</Reference>
<Reference>
<Citation>Thole JM, Nielsen E. 2008. Phosphoinositides in plants: novel functions in membrane trafficking. Current Opinion in Plant Biology 11: 620-631.</Citation>
</Reference>
<Reference>
<Citation>Vincent P, Chua M, Nogue F, Fairbrother A, Mekeel H, Xu Y, Allen N, Bibikova TN, Gilroy S, Bankaitis VA. 2005. A Sec14p-nodulin domain phosphatidylinositol transfer protein polarizes membrane growth of Arabidopsis thaliana root hairs. Journal of Cell Biology 168: 801-812.</Citation>
</Reference>
<Reference>
<Citation>Wang W, Liu N, Gao C, Cai H, Romeis T, Tang D. 2020. The Arabidopsis exocyst subunits EXO70B1 and EXO70B2 regulate FLS2 homeostasis at the plasma membrane. New Phytologist 227: 529-544.</Citation>
</Reference>
<Reference>
<Citation>Wesley SV, Helliwell CA, Smith NA, Wang MB, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D, Stoutjesdijk PA et al. 2001. Construct design for efficient, effective and high-throughput gene silencing in plants. The Plant Journal 27: 581-590.</Citation>
</Reference>
<Reference>
<Citation>Williams ME, Torabinejad J, Cohick E, Parker K, Drake EJ, Thompson JE, Hortter M, Dewald DB. 2005. Mutations in the Arabidopsis phosphoinositide phosphatase gene SAC9 lead to overaccumulation of PtdIns(4,5)P2 and constitutive expression of the stress-response pathway. Plant Physiology 138: 686-700.</Citation>
</Reference>
<Reference>
<Citation>Yoo SD, Cho YH, Sheen J. 2007. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nature Protocols 2: 1565-1572.</Citation>
</Reference>
<Reference>
<Citation>Zhao Y, Yan A, Feijo JA, Furutani M, Takenawa T, Hwang I, Fu Y, Yang Z. 2010. Phosphoinositides regulate clathrin-dependent endocytosis at the tip of pollen tubes in Arabidopsis and tobacco. Plant Cell 22: 4031-4044.</Citation>
</Reference>
<Reference>
<Citation>Zuckerkandl E, Pauling L. 1965. Evolutionary divergence and convergence of proteins. In: Bryson V, Vogel HJ, eds. Evolving genes and proteins. New York, NY, USA: Academic Press, 97-166.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
</list>
<tree>
<country name="Allemagne">
<noRegion>
<name sortKey="Rausche, Juliane" sort="Rausche, Juliane" uniqKey="Rausche J" first="Juliane" last="Rausche">Juliane Rausche</name>
</noRegion>
<name sortKey="Fratini, Marta" sort="Fratini, Marta" uniqKey="Fratini M" first="Marta" last="Fratini">Marta Fratini</name>
<name sortKey="Heilmann, Ingo" sort="Heilmann, Ingo" uniqKey="Heilmann I" first="Ingo" last="Heilmann">Ingo Heilmann</name>
<name sortKey="Rosahl, Sabine" sort="Rosahl, Sabine" uniqKey="Rosahl S" first="Sabine" last="Rosahl">Sabine Rosahl</name>
<name sortKey="Stauder, Ron" sort="Stauder, Ron" uniqKey="Stauder R" first="Ron" last="Stauder">Ron Stauder</name>
<name sortKey="Stenzel, Irene" sort="Stenzel, Irene" uniqKey="Stenzel I" first="Irene" last="Stenzel">Irene Stenzel</name>
<name sortKey="Trujillo, Marco" sort="Trujillo, Marco" uniqKey="Trujillo M" first="Marco" last="Trujillo">Marco Trujillo</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantPathoEffV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000227 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000227 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantPathoEffV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32762082
   |texte=   A phosphoinositide 5-phosphatase from Solanum tuberosum is activated by PAMP-treatment and may antagonize phosphatidylinositol 4,5-bisphosphate at Phytophthora infestans infection sites.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32762082" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantPathoEffV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 16:00:34 2020. Site generation: Sat Nov 21 16:01:01 2020